Show Notes:

- [17:20] Fractal Dimension
- https://en.wikipedia.org/wiki/Hausdorff dimension
- https://en.wikipedia.org/wiki/Fractal dimension\#Role of scalin g
- https://en.wikipedia.org/wiki/How Long Is the Coast of Britain \%3F Statistical Self-Similarity and Fractional Dimension
- http://math.bu.edu/DYSYS/chaos-game/node6.html: Fractal dimension is a measure of how "complicated" a self-similar figure is. In a rough sense, it measures "how many points" lie in a given set.
- A good example: a line can be broken into N different lines that each need to be scaled by a factor of N to get the original line:
---- (This is a line of length $4=4$ lines of length 1)

Similarly, a square can be broken into $\mathrm{N}^{\wedge} 2$ different copies that each, when scaled by N yields the original square:

A square cut into 25 identical copies, each when scaled by a factor of 4 produces the original square. Finally, a cube can be broken to $\mathrm{N}^{\wedge} 3$ different identical cubes, each when scaled by a factor of N yields a cube of the original volume. But what about a weird curve like this?

We can approach this from a different angle: Scale the Sierpinski triangle by 2 , and you get 3 different copies of it. What does this mean though? Is it 1 dimensional? It's just a bunch of lines after all! But it's also a triangle...?

The fractal dimension answers the question for a given curve:
"What is the exponent D I need to raise an integer N by to produce $\mathrm{N}^{\wedge} \mathrm{D}$ identical curves that each, when scaled by N give me the original curve?"

Formally, this is represented as:
$D=-\log (S) / \log (N)$ where S is the total number of identical copies (this notation is not canon!), and N is our scaling factor.

Going back to our problem with the freaky triangle above, $\mathrm{N}=2, \mathrm{~N}^{\wedge} \mathrm{D}=3=>\mathrm{D}=\log (3) / \log (2) \sim=1.585$

We can see it's somewhat 1-D and somewhat 2-D, but to a very precise degree. That's the power of fractal dimension, it tells us exactly what the dimension of a curve is to a degree that matches our intuition!

- More fractals:
https://en.wikipedia.org/wiki/List of fractals by Hausdorff dim ension
- [23:55] Dirac Notation and Hilbert Space
- https://en.wikipedia.org/wiki/Bra\�\�\�ket notation
- [26:55] 10 Martini Problem
- The name was coined by Barry Simon in this 1982 article (page 487):
- The Ten Martini Problem: The almost Mathieu operator has a Cantor spectrum.
- The name comes from the fact that Mark Kac* has offered ten martinis to anyone who solves it. [...] Actually, Kac said "has all its gaps there", so perhaps one should solve instead:
- The Ten Martini Problem: (Strong Form, or should it be Dry Form)...
- [^] Marc Kac, public communication at 1981 AMS Annual Meeting.
- https://annals.math.princeton.edu/wp-content/uploads/annals-v

170-n1-p08-p.pdf

- [28:10] Mathieu Operator
- https://en.wikipedia.org/wiki/Almost Mathieu operator
- [34:10] Julia Sets and Mandelbrot Set
- http://www.alunw.freeuk.com/mandelbrotroom.html
- https://en.wikipedia.org/wiki/Mandelbrot set
- [51:10] Blind Spot
- https://www.exploratorium.edu/snacks/blind-spot

